Measuring stress and strain

Lecture 4.2 - How is stress measured?

Lecturer: David Whipp
david.whipp@helsinki.fi
Goals of this lecture

- Introduce several methods for measuring stress
- Distinguish between rock strength measurements and in situ stress measurements in the crust
Measuring stress

- Rock *yield stress* (or strength) can be measured in a laboratory, providing insight into stresses rock can support before failure.

- An alternative is to measure stress in the lithosphere *in situ*, where the focus is the stress field at the sample site, rather than the yield stress of the sample.
Laboratory rock stress measurement

- Laboratory rock strength measurements are common example of **direct stress measurement**
- A rock sample is loaded in a press and **squeezed** until it fails
- This measures **rock strength**

When the sample transitions from elastic to brittle or plastic deformation, the **yield strength** (stress) has been reached.

Fig. 5.2 in Stüwe, 2007
In situ stress measurement: Overcoring

- **Overcoring** is an *in situ* stress measurement made at the bottom of a drill hole.

- The hole is drilled and strain gauges are installed on the base and sides in 3 orthogonal positions.

Fig. 2.17, Turcotte and Schubert, 2014
In situ stress measurement: Overcoring

- Overcoring is an *in situ* stress measurement made at the bottom of a drill hole.
 - The hole is drilled and *strain gauges* are installed on the base and sides in 3 orthogonal positions.
 - An outer annular hole is drilled around the original hole.
 - This is thought to completely relieve the stress in the original hole, allowing stress to be calculated from the relaxation measured by the strain gauges.

Fig. 2.17, Turcotte and Schubert, 2014
In situ stress measurement: Overcoring

- **Overcoring** is an *in situ* stress measurement made at the bottom of a drill hole.

- The hole is drilled and *strain gauges* are installed on the base and sides in 3 orthogonal positions.

- An outer annular hole is drilled around the original hole.

- This is thought to **completely** relieve the stress in the original hole, allowing stress to be calculated from the relaxation measured by the strain gauges.

- **Limitation**: Max hole length: ~1 m (!)
In situ stress measurement: Hydrofracturing

- Stress measurement by hydrofracturing involves isolating a section of a drill hole that is free of fractures and other porosities.
In situ stress measurement: Hydrofracturing

- Stress measurement by **hydrofracturing** involves isolating a section of a drill hole that is free of fractures and other porosities.
- Fluid is pumped into the isolated segment, continually monitoring the pressure.
- Pressure is increased until fracturing occurs.

Zhao et al., 2013
In situ stress measurement: Hydrofracturing

- Stress measurement by **hydrofracturing** involves isolating a section of a drill hole that is free of fractures and other porosities.
- Fluid is pumped into the isolated segment, continually monitoring the pressure.
- Pressure is increased until fracturing occurs.
- The pressure when fracturing occurs is the **breakdown pressure**, p_b.
- If the pump is immediately turned off after fracture and the circuit is kept closed, the **instantaneous shut-in pressure (ISIP)** is recorded.
In situ stress measurement: Hydrofracturing

- The ISIP value is the **minimum pressure** required to keep the fractures open.
- If we assume vertical fracture orientations and fracture in pure tension, then:
 - The **minimum horizontal principal stress** is equal to the ISIP value.
 - The maximum horizontal principal stress can be deduced from p_b and ISIP, but less accurately.

![Hydrofracturing pressure log](image)

Fig. 2.18, Turcotte and Schubert, 2014
The hydrofracturing (fracking) controversy

- Hydrofracturing to measure stress is a bit different from the ‘controversial’ hydrofracturing used in the oil and gas industry.

- The general concept is the same, with injected fluids being used to fracture rock, but the extraction of oil or gas requires a much larger network of fractures to liberate trapped deposits.

- Some of the potential risks in this process are shown on the left.
Let’s see what you’ve learned…

• If you’re watching this lecture in Moodle, you will now be automatically directed to the quiz!

• References:
