Geodynamics

Kinematics of plate tectonics
Lecture 2.5 - Triple junctions

Lecturer: David Whipp
david.whipp@helsinki.fi
Goal of this lecture

- Introduce triple junctions and how to determine whether they can exist
Plate boundaries can only end in a **triple junction**, where they intersect another boundary.

A ridge-ridge-ridge (RRR) triple junction

![Diagram of a triple junction with labels A, B, and C, and angles 360° - α, 110°, and triple junction angle.](Fig. 1.36, Turcotte and Schubert, 2014)
Plate boundaries can only end in a triple junction, where they intersect another boundary.

Triple junctions are typically listed in shorthand based on the types of plate boundaries involved in the triple junction:

- **R** = ridge, **T** = trench (subduction), **F** = transform fault
- **RRR** = ridge-ridge-ridge triple junction
Triple junctions

- For spreading ridges, we can assume spreading is perpendicular to the ridge axis
- For plates A and B, this means spreading at an azimuth of 90°
Triple junctions

- For spreading ridges, we can assume spreading is perpendicular to the ridge axis
- For plates A and B, this means spreading at an azimuth of 90°
- Up to 10 types of triple junctions are possible, but some of those cannot exist (e.g., FFF)

Fig. 1.36, Turcotte and Schubert, 2014
For spreading ridges, we can assume spreading is perpendicular to the ridge axis.

For plates A and B, this means spreading at an azimuth of 90°.

Up to 10 types of triple junctions are possible, but some of those cannot exist (e.g., FFF).

For a triple junction to exist, the vectors of relative motion must form a closed triangle.

In other words, \[\nu_{BA} + \nu_{CB} + \nu_{AC} = 0 \]
Let’s consider an example based on the RRR triple junction.

Assume we know $v_{BA} = 100 \text{ mm a}^{-1}$ and $v_{CB} = 80 \text{ mm a}^{-1}$.
Let's consider an example based on the RRR triple junction.

Assume we know $v_{BA} = 100 \text{ mm a}^{-1}$ and $v_{CB} = 80 \text{ mm a}^{-1}$.

Using the geometry and spreading rates of two of the ridges, we can find the orientation and spreading rate of the third since $v_{BA} + v_{CB} + v_{AC} = 0$.

Fig. 1.36, Turcotte and Schubert, 2014
Triple junctions

- We can find v_{AC} using the law of cosines:

 \[c^2 = a^2 + b^2 - 2ab \cos \alpha \]

- Thus, $v_{AC} = (v_{BA}^2 + v_{CB}^2 - 2v_{BA}v_{CB} \cos 70^\circ)^{1/2}$

- $v_{AC} \approx 105 \text{ mm yr}^{-1}$
Triple junctions

- We can find v_{AC} using the law of cosines:
 \[c^2 = a^2 + b^2 - 2ab \cos \alpha \]
- Thus, $v_{AC} = (v_{BA}^2 + v_{CB}^2 - 2 v_{BA} v_{CB} \cos 70^\circ)^{1/2}$
- $v_{AC} = \sim 105 \text{ mm yr}^{-1}$
- We can find the orientation of v_{AC} using the law of sines:
 \[\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} \]
 or more simply, \[\frac{a}{b} = \frac{\sin \alpha}{\sin \beta} \]
- Thus, \[\frac{v_{CB}}{v_{AC}} = \frac{\sin(\alpha - 180^\circ)}{\sin 70^\circ} \]
- $\alpha = \sim 230^\circ$
Stability of triple junctions

- A triple junction can either be **stable** with a geometry that does not change with time, or **unstable** with a geometry that will only exist momentarily before changing.

- A stable geometry can be moving with time, as long as the relative motion of the plates, and the azimuths and types of plate boundaries do not change.

- Four or more plates intersecting is always **unstable**.

Fig. 1.36, Turcotte and Schubert, 2014
Test your might

- You can find a short quiz about this lecture at https://elomake.helsinki.fi/lomakkeet/63056/lomake.html
- Please take the quiz to help me know what you have learned
- Your answers are anonymous and will not count in your course grade