SANNA KIVIJÄRVI

Suggesting an evaluation framework for the project
Music for All: A Systemic Approach
SANNA KIVIJÄRVI

Suggesting an evaluation framework for the project
Music for All: A Systemic Approach

www.projectmusicforall.eu

in cooperation with:
Special Education Unit
Department of Teacher Education
Faculty of Behavioral Sciences
Helsinki University

Keywords: project evaluation / steering, systems approach, General System Theory,
Structural Alignment Theory

Photos: Pekka Elomaa

Designed in Special Music Centre Resonaari (MK), Helsinki 2010

The content of this report reflects the author and the Managing Authority and project partners cannot be held liable for the information of this report.

All rights reserved
CONTENT

Introduction 3

Systems Approach 6
 General System theory 6
 Key concepts of Systems Approaches 7

Conceptualizing and Comparison – Processing Commonalities and Differences 11
 Structural Alignment Theory 11
 Choice 13

The Evaluation Framework 15

Conclusions and Discussion 17

References 18
INTRODUCTION

This paper aims at reemphasizing the fact that system approaches provide relevant and interdisciplinary theoretical tools for considering the questions of project evaluation and steering (see also Broquet 2009, 1 - 18). In general and from the systemic point of view the meaning of proper conceptualization in project build and evaluation is seriously underlined in the report Suggesting an Evaluation Framework for the project Music for All: A Systemic Approach. It is also hoped that this paper will serve as an introduction to the systemic approaches.

Project-formed work (Midler 1995, 3; Hakala 2010, 4) has become a common pattern in societies in general (the concept of project society) and particularly in international cooperation. The influence of European Union on the new public management and the project work is remarkable (Sulkunen 2006, 17). According to research in a variety of the scientific field and in non-scientific project evaluation and steering, project work is often described and argued to be effective, dynamic and innovative (Sulkunen 2006, 70). Also complex problems and paradoxes in project work and project society have been illustrated and identified in theoretical and empirical analysis and research: failures in the accumulation of knowledge and abilities, and the lack of continuity (Brunila 2009, 25; Hakala 2010, 4; Sulkunen 2006, 70.)

The tendencies in the discourses of project evaluation and steering are rather contradictory. According to research, the endless evaluation and steering processes and discourse have been argued to cause the complexity of project work (e.g. Sulkunen 2006, 13; Warpenius 2006, 144). Also the external evaluators, steering and evaluation groups and the evaluation model introducers have been illustrated to cause e.g. the unnecessary fragmentation in the organizational structures and intermediaries during the project (Kankare 2006, 121). On the other hand, the use of (assisting) external evaluator and scientific approaches can be utilized with a good reason in light of the fact that systematicity is one of the main challenges in project evaluation (Kaakinen 2004, 94). Hopefully this paper will underline the crucial importance of functional project evaluation and clarify some of the possible difficulties and unavoidable complexity that will occur also when evaluating the project Music for All.

The role of conceptualization in project-based work and cooperation is - or at least it should be - decisive. Especially in international cooperation shared conceptualizations - a common language - are needed for the functional interaction process and further for the successful project. In the field of (special) education even the main concepts, e.g. inclusion,
normalization and equality are not unambiguous because of the variations in institutional arrangements and cultural formations. The consideration about the principles and difficulties of conceptualization is also relevant when defining the concept “Special Music Education”. How does this defining process respond to the updated concepts and results in research, e.g. the rise of the concept “Universal Design” (Rose 2001)? Conceptualization is also significant when project evaluation is based on scientific methods. The uncertainty in conceptualization may lead to unstable results and circularity during the project evaluation and steering. Evaluation and steering processes often include comparison which in most cases is challenging. A promising start to the process is, when the key concepts of the project are shared and carefully weighted among the project partners.

Project evaluation and steering are both current as the project Music for All is ending in April 2011. System approaches are interdisciplinary; theories, models and tools demonstrated in the report can easily be adapted the purposes of evaluating the long-term and specific objectives of the project Music for All (e.g. the availability improvement process in customized music education or the realization of the objectives in attitude improvement). Naturally there are other objectives not mentioned in the paper that need evaluation e.g. according to the project milestones or the Methodological Handbook. In the systemic parlance these short-term objectives are called simply as the goals of the project. System approaches are highly-valued and commonly utilized in organization sciences and economics and a system viewpoint could also be useful in rating the financial merits of the project Music for All.

This report is a summary, not an essay, of the main aspects of the system viewpoint but includes a prescriptive part and steering for the project evaluation in section four. During this commission the actual project evaluation was not demanded besides the project is still on process. The main object in this paper is to illustrate the advances of systems approach when evaluating the main attributes of the project Music for All. The proposed evaluation framework is an effort to describe the utility of the theories and concepts presented in this paper.

The report proceeds as follows. Next the main principles of the systems approach are shortly presented. In chapter 3, when coming to the complexity of comparison, the summary of Structural Alignment Theory is described. A minimum set of concepts essential to understanding the theories and the evaluation framework suggestion are also summarized. Generally, the philosophical background of the systemic approaches is shortened but still discussed so that the multidisciplinary of system viewpoints and the profitability in micro- and macro levels is hopefully easier to discover. Also some psychological phenomena that has been proved to be significant e.g. in decision making or comparison are briefly described. Finally, a suggestion of an evaluation framework that clarifies how these theories and models may be applied in evaluation of the project Music for All is given.
The project Music for All is already characterized by a scientific approach: the double bond of education and science in the process of the Methodological Handbook. The practical and emancipatory knowledge-constitutive interests can be recognized. This experience and knowledge should be fully advantaged and expanded to conceptualization in general among the project partners - and to the project evaluation and steering to overcome the lack of synergies and continuity that often occur in project-formed cooperation.

Photo: Pekka Elomaa
SYSTEMS APPROACH

A system is a set of interrelated elements. At least two elements and a relation that holds between the elements and at least one other element in the set compose a system. A system is an entity in which each of its elements has a direct or indirect connection between the other elements. Also the subsets of a system need to be related to every other subset. (Ackoff 1971, 662).

There is a difference between systems or organisms and organizations. Organization may be defined 1) as a system that contains at least two purposeful elements which have a common purpose, (a purposeful system) and 2) as a system that has a functional division of labour in pursuit of the common purposes of its elements that define it. Also the definition of an organization includes that the parts of the system can respond to the behavior of each other through observation or communication, and at least one of the system’s subset has a system control function. (Ackoff 1971, 669 - 670).

General System Theory

General system theory has become a recognized approach in the academic fields of teaching and research (university courses, texts, books, journals, working groups, centers etc.). The term was introduced in 1950’s by von Bertalanffy and the system viewpoint has proved to be indispensable in a vast variety of scientific and technological fields (von Bertalanffy 1984). General system theory also represents a “novel” paradigm in scientific thinking – the concept of a system can be defined and developed in countless ways required by the objectives of research and as reflecting different aspects of the central notion. There are two possible ways to make an introduction to the system theory: 1) The available definitions and models of a system can be accepted. According to the existing definitions the consequent theory can be derived. 2) One can start from the problems as they have risen, show the necessity of the system viewpoint and develop it. (von Bertalanffy 1984.)

There are three main aspects that need to be introduced when coming to system approaches – naturally these aspects are not separable in content. The first realm is that general system theory is the doctrine applying to all systems and “systems science” (the theory of systems in different sciences e.g., biology, psychology, social sciences, economics). This doctrine can also be seen as an effort to attain a synthesis of scientific knowledge. These common principles include the idea not to isolate the elements of a system but to understand their interrelations, structure and dynamics. (von Bertalanffy
1984.) To use von Bertalanffy's (1984) expression: “General system theory is a scientific exploration of 'wholes' or 'wholeness'.”

“Systems technology” is the second aspect of systemic viewpoints. Systems technology covers problems arising in complex society and technology. Holistic or multidisciplinary approaches have become necessary in understanding the spectrum in e.g. socio-economic systems, international relations, politics or ecosystem. For instance, a need for scientific control and generalist understanding is also obvious in such matters. (von Bertalanffy 1984.)

As a contrary to classical sciences’ philosophical aspects and world view based on one-way causal and mechanistic paradigm, there is “systems philosophy” which can be divided into three parts. The first, systems ontology, consists of the realization of a system or systems – what a system means. Real systems exist independently, e.g. a rose or an atom. Abstracted systems are a subclass of symbolic systems for example mathematics or music. These systems are conceptual and according to general system theory, correspond with reality. It is apparent from the examples above that the problems arising for epistemology in the investigation of wholes are different if compared with the problems that arise in classical science and linear causality. Even though systems epistemology shares the same scientific attitude as empirism or logical positivism it is profoundly different. New categories of interaction, transaction and organization are needed and the basis for these definitions is in epistemology. (von Bertalanffy 1984.)

“Values” is the third part of von Bertalanffy’s systems philosophy. The image of a man is very different when the world is seen as a hierarchy of organized systems than if it is seen as a chance event governed reality of physical particles. In systemic approaches the world of symbols, values, social entities and cultures is very “real” and it is apt to bridge the opposition of science and humanities and natural and social sciences. (von Bertalanffy 1984.)

Key concepts of Systems Approaches

The existence of strong interactions or interactions which are nontrivial, or nonlinear characterize a system. The methodological problem of systems theory is to provide for problems which are of a more general nature. (von Bertalanffy 1984.)

There are various approaches to deal with the problems of “nonlinear interaction”. Classical system theory applies classical mathematics, the aim is to state principles which apply to systems in general or in defined subclasses, to provide techniques for their investigation and description and apply these to concrete cases. To mention other applications in systems theory there are computerization and simulation, theories of compartment, set, graph, net and cybernetics, information, automata, game, decision and
queuing. These theories are based on mathematically formulated algorithms and it may seem difficult to understand how these formulations can be found e.g. in social change. (von Bertalanffy 1984.)

Certain concepts, e.g. hierarchical order, progressive differentiation and feedback, are applicable broadly to systems of a different kind. Diverse system models will have to be applied according to the nature of the case and operational criteria but the complex of concepts fundamental in general systems theory is the hierarchical order. Hierarchies can be found in the order of parts (“structures”) and order of processes (“functions”). (von Bertalanffy 1984.) E.g. at the levels of “man” and “socio-cultural systems” in Informal Survey of main levels in the Hierarchy of Systems there are descriptions of symbolism, self-awareness etc. as consequences, communication by language and cultures. Disciplines and theories according to these descriptions are e.g. statistical and dynamic laws in population dynamics, sociology, economics and history (Boulding 1956 in von Bertalanffy 1984).

The goal of a system in a particular situation is a preferred outcome that can be obtained within a specific time period. The objective is a preferred outcome but can be obtained within a longer time of period. (Ackoff 1971, 666.)

An abstract system is one of whose all elements are concepts (also e.g in von Bertalanffy, 1984). In an abstracted system the elements and the relations between them are created by assumptions. In concrete systems at least one of the elements is concrete and the research also requires an empirical component in it. (Ackoff 1971, 662.)

The state of a system at a moment of time is the set of relevant properties which that system has at that time. Each system has an unlimited number of relevant properties but not all of them are relevant to a particular research. The values of the properties constitute the state of a system. Also changes may occur e.g. during evaluation that may affect the relevant properties of the system and further the state of it. The environment of a system constitutes of elements that are not part of the system but a change of any can produce a change in the state of the system. External elements which affect the irrelevant properties of a system are not part of its environment. (Ackoff 1971, 662 - 670.)

A system or environmental event is a change in one or more structural properties of the system over a specific period of time. A static or one-state system is when no events occur. A dynamic (multistate) system is in which events occur and whose state changes. A homeostatic system is a static system whose elements and environment are dynamic. (Ackoff 1971, 664.)

Six types of systems can be identified by using the key concepts presented before in the paper.
<table>
<thead>
<tr>
<th>System</th>
<th>Description</th>
<th>Behavior and State (Outcome)</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-maintaining</td>
<td>Can react only in one way to external or internal event</td>
<td>Reactive → fixed</td>
</tr>
<tr>
<td></td>
<td>Reacts differently to different events</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Different reactions produce the same external or internal outcome (=state)</td>
<td></td>
</tr>
<tr>
<td>Goal-Seeking</td>
<td>Can respond differently to a particular event</td>
<td>Responsive → fixed</td>
</tr>
<tr>
<td></td>
<td>The response / responses can be in one or more different states</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particular state = a goal (short-term objective)</td>
<td></td>
</tr>
<tr>
<td>Multi-goal-Seeking</td>
<td>Is goal-seeking in more than one different states</td>
<td>Variable and chosen → variable and determined</td>
</tr>
<tr>
<td>Purposive</td>
<td>Multi-goal-Seeking system in where the goals have a common property (the purpose of the system is to product the property)</td>
<td>Variable and chosen → variable and determined</td>
</tr>
<tr>
<td>Purposeful</td>
<td>Can produce the same outcome in different ways in the same state and produce different outcomes</td>
<td>Variable and chosen → variable and chosen</td>
</tr>
<tr>
<td>Ideal-Seeking</td>
<td>Can also be seen as a subclass for purposeful systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Has a concept of perfection – seeks another goal which more closely approximates its ideal</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Insert table caption (adapted from Ackoff 1971, 665).

System Behavior

Table 1 describes some key concepts of system’s behavior. Understanding the nature of the Table 1 certain key concepts about system behavior must be conceptualized.

System’s behavior is a system event which is either necessary or sufficient for another system event in that system or in its environment. Thus behavior is a system event which initiates other events. Reactions, responses and acts conceptualized next may constitute behavior but are system events whose antecedents are of interest. System events whose consequences are of interest consist of system behavior. (Ackoff 1971, 664.)

A reaction of a system is a system event for which another event that occurs to the same system or its environment is sufficient – it is deterministically caused by another event. A response of a system is a system event for which another event that occurs (caused by a system or environmental stimulus) to the same system or its environment is necessary - not sufficient. An act of a system is of which no change in the system’s environment is either necessary or sufficient. Acts are self-determined events, internal changes in a system. A process is a sequence of behavior that constitutes a system and has a goal-producing function. Most systems display a combination of these types of change. (Ackoff 1971, 664.)
A system must be either variety-increasing or variety-decreasing. Variety-increasing system can display a greater variety and a higher level of a state than any of its elements. A variety-reducing system shows less variety of change and operates at a lower level than any of its elements. The function of a system is the production of outcomes that define its goals and objectives - to function is to be able to produce the same outcome in different ways. A system is adaptive if it reacts / responds by changing its own state or the environmental state to increase its efficiency (regain) if the environmental or internal changes are reductive.

Adaption can be

- other-other (stimulus: external - response: modifying the environment)
- self-other (stimulus: external - response: modifying itself)
- self-other (stimulus: internal - response: modifying the environment) or
(Ackoff 1971, 661-671.)

Photo: Pekka Eloaa
CONCEPTUALIZING AND COMPARISON – PROCESSING COMMONALITIES AND DIFFERENCES

Structural Alignment Theory

The experience of comparison is selective: only certain commonalities are highlighted. The key factor in comparison is the presence of higher order connections between lower order relations - in other words, systematicity. (Gentner & Markman 1997, 49.)

A comparison process leads to insight(s). They highlight commonalities and relevant differences and invite new inferences, promote new ways of construing situations. This creative potential is easiest to notice when the domains are very different. Still – all kinds of systematic comparisons can lead to insights. (Gentner & Markman 1997, 54.)

Structural alignment plays a central role in both choice and similarity comparison. A framework for addressing the complex processes associated with representing, comparing and selecting between alternatives can be processed according to the approaches of structural alignment. The unification provides a basis for explaining what information is important in a choice and constrains the information that is inferred about options. The commonalities of higher level cognitive processes can be recognized (including decision making, similarity comparison, analogical reasoning, problem solving and categorization). (Gentner & Markman 1993, 127).

Since the introduction by Gentner (1983) Structural Alignment Theory has provided many important contributions to (cognitive) science over the last three decades. Structural alignment theory has successfully explained a broad range of cognitive phenomena in such domains as analogy, metaphor, concept combination, categorization, memory, choice and similarity and difference judgements. (Gentner & Markman 1997, 49).

Estes & Hasson (2004, 1082) simply states that structural alignment theory posits that comparison and related (cognitive) operations are accomplished by putting the structure of one concept into alignment with the structure of another concept to which it is compared. For instance, when comparing a rose and a violet, one aligns two concepts (Estes & Hasson 2004, 1082). Commonalities can be yield in the process (e.g., both roses and violets have petals), alignable differences (related commonalities, e.g. roses are red, violets are blue) and nonalignable differences (not related commonalities, e.g. roses have thorns but violets do not). (Estes & Hasson 2004, 1082.) The definition for nonalignable differences is if there is an attribute possessed that has no correspondence in other concept (e.g., thorns) (Estes
& Hasson 2004, 1082). This distinction is the basis of alignment theory’s predictions about how people evaluate similarity. The central claim is that “alignable differences are more salient than nonalignable differences—and the alignable difference should be more heavily weighted than the nonalignable difference”. (Estes & Hasson 2004, 1082, Gentner & Markman 1997, 50).

The distinction between alignable and nonalignable differences is the groundwork of structural alignment theory. The most natural prediction of feature-intersection models and a commonsense view is that it should be easier to list differences the more of them are to list – the more dissimilar the two items are. If the comparison focuses on alignable differences than on nonalignable differences, then alignable differences should be listed more fluently than nonalignable differences. (Gentner & Markman 1997, 50.) Distinctions are still subjective. The distinctions given are considered alignable or nonalignable to one’s own concept of stimuli and this subjectivity can potentially lead to circularity. The psychological viewpoint to the process is that people rather focus on alignable differences than nonalignable differences when making comparisons. Alignable differences also have a greater impact on people’s perception of similarity than do nonalignable differences. Fundamental in avoiding the potential circularity are the operational definitions. (Estes & Hasson 2004, 1085.)

In particular there must be a representational system that is sufficiently explicit about relational structure to express the causal dependencies that match across the domains. There must be a representational scheme capable of expressing not only the objects but also the relationships and bindings between them, including higher order relations such as causal relations. (Gentner & Markman 1997, 46.)

Similarity is like analogy. In fundamental sense similarity and analogy both involve an alignment of relational structure. Definitely the difference between them can be more likely described as a continuum not a dichotomy. The difference between (literal) similarity and analogy is that in analogy only relational predicates are shared, whereas in similarity, both relational predicates and object attributes are shared. (Gentner & Markman 1997, 48.) The involvement of an alignment of relational structure characterizes analogy.

Next the summary of the psychological viewpoints fundamental to analogy. 1) *Structural consistence*: Alignment must serve parallel connectivity and one-to-one correspondence. The defining characteristic is that relations and arguments must match also any element in one representation to at most one matching element in other representation. (Gentner
1983, 56; Gentner & Markman 1997, 47). 2) **Relational focus** means that analogies do need to involve common object descriptions but must involve common relations. 3) **Systematicity**: The systematicity principle captures a tacit preference for coherence and causal predictive power in analogy processing. A particularly striking example of structural dominance in analogy is that of cross-mapping. A cross-mapping is a comparison in which two analogous scenarios contain similar or identical objects that play different relational roles in the two scenarios. A simple example of cross-mapping is 1:3::3:9. (Gentner & Markman 1997, 47; Gentner & Toupin, 1986 in Gentner & Markman 1997, 47.) The implicit preference for systematicity is crucial: it is what permits us to generate spontaneous inferences. When we have aligned a system in the base domain with a - (less complete) system in the target domain, then further statements can be connected to the base system and projected in the target. The factual correctness of the “candidate inferences” must be checked – any process capable of making novel true inferences is also capable of producing false inferences. (Gentner & Markman 1997, 47.)

Structural completion can also lead to unexpected inferences. The same is true with similarity comparisons, thus similarity is also pluralistic. A parallel disassociation has been found in problem-solving transfer: Retrieval likelihood is sensitive to surface similarity, whereas the likelihood of successful problem solving is sensitive to structural similarity. Another way in which similarities is pluralistic is that different kinds of similarity emerge at different points in processing. Overall the difference between early and late processing seems to be a shift from local matches to global structural alignment. (Gentner & Markman 1997, 53.)

In summary, the process of structural alignment leads to a focus on matching relational systems. This focus determines which commonalities and differences are salient. This may seem paradoxical: Why should the common alignment determine which differences are important? Although this statement may seem contradictory: If we reflect the notable dissimilarity of most pairs, the pattern seems functionally sensible. Intuitive conclusion is that when a pair of items is similar, their differences are also likely to be important. (Gentner & Markman 1997, 51.)

Choice

Structural Alignment is relevant when the processes underlying choice behavior are discussed. Reviewed parallels between phenomena in decision processing suggest the important role of structural alignment in decision making. According to structural alignment viewpoint, it can be pointed which features to pay attention in choice options. Alignable differences have been suggested to be more weighted in choice situations than nonalignable differences. (Markman & Medin 1995, 117).
Research in decision making and choice behavior often assumes that dimensions or features of choice corresponding each other are compared. At the same time, recent models of similarity comparison stress the importance of structural alignment and associated inference processes. (Markman & Medin 1995, 117 - 130)

Decision makers use the values of some attributes to infer the missing values of others (Markman & Medin 1995, 117) and to understand e.g. how missing information is weighted. Decision makers also reorganize the information they have to increase the ease and accuracy of their decisions. (Markman & Medin 1995, 117.) Given some representation of the alternatives there are distinct strategies by which an individual comes to a decision. Alternative-based strategies focus primarily on evaluating the options individually. One of the options is then selected on the basis of this evaluation. Other strategies are attribute-based. These strategies are characterized by the focus on the attributes of the options, often comparing the value for each option along different dimensions. (Markman & Medin, 1993.)

Markman & Medin (1993) present that choice, like similarity may be driven by alignability or comparability and thus is constructive in a manner that facilitates alignment. When the options are comparable, alignable aspects of the items already exist, so very little attribute construction needs take place. When the options are not fully comparable, it is expected that 1) a focus on alignable rather than non alignable differences and 2) an attempt to establish alignability across aspects which on the surface are not alignable. Many decisions involve a comparison of richly described, partially comparable decisions. Alignable aspects may be properties of the options that are given, or they may be the properties of the options that are constructed during the choice that takes either common or nonalignable properties and re-represent them as alignable differences. (Markman & Medin 1997, 517-535.)
THE EVALUATION FRAMEWORK

In Figure 1 the structure of the project Music for All as a system is described.

In Figure 2 the preliminary framework for evaluating the project success is described. The purpose is to integrate the different theories and concepts presented in this paper. The framework works as the basis for the forthcoming evaluation checklist.
<table>
<thead>
<tr>
<th>System Elements and their Attributes</th>
<th>Quality of Process Phases</th>
<th>Goals realization</th>
<th>Final Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steering Group</td>
<td>Perceived quality of Milestones 1-6</td>
<td>The objectives of the Central Baltic Interreg IV A Programme / EU:</td>
<td>Single measure of success</td>
</tr>
<tr>
<td>Perminant Staff</td>
<td>Perceived quality of Main events</td>
<td>1. Attractive & Dynamic Societies (Priority)</td>
<td></td>
</tr>
<tr>
<td>Temporary Staff</td>
<td>1. Kick off meeting</td>
<td>2. Improving living conditions & social inclusion (Direction of support)</td>
<td></td>
</tr>
<tr>
<td>First Level Controllers</td>
<td>2. Showcase Conference at Kulturhuset Stockholm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Resources</td>
<td>3. Experience exchange workshop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timeframe & Schedule</td>
<td>4. Teachers’ seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agreements</td>
<td>5. Meeting in Music</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organizational Structures</td>
<td>6. Final Conference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project geographic area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability / skills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The number of-experiences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experience</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. The Evaluation Framework with simple examples.

The measurement instrument for evaluating the project should fit with the above framework. This approach guarantees a systemic and holistic evaluation of the whole project.
CONCLUSIONS AND DISCUSSION

The main object in this paper is to underline the importance of conceptualization during the processes of project evaluation and steering which often include comparison. In the project Music for All consideration of conceptualization is also essential when the concept of Special Music Education is processed.

The realization of the complex and ambitious long-term and specific objects of the project Music for All definitely needs continuity in future projects. The long-term and specific utility can only be observed during a longer period of time. Especially the concepts of system environment and system behavior may be useful when evaluating the long-term utility of the project Music for All. As any educational system, the project Music for All is producing skills and attitudes to the use of other systems. The project can also be considered as a special case of education, because of the (short-term) goal to educate educators. (Luhmann 2004, 152.) The project has several objects at micro- and macro levels that can be considered as interdisciplinary but the project should also be steered and evaluated as a whole. The key principle in the systemic approaches is the holistic idea of “whole” or “wholeness” and also extremely notable is the multidisciplinary of the theories or the theoretical integration among sciences. Systemic viewpoints illustrate how the project can be systematically evaluated when the subsets in the project and the connections between them are recognized and defined.

This paper attempts to demonstrate how the processes of project evaluation and conceptualization can come with profound changes according to possible projects in the future and within decision making. According to a proper evaluation in the previous project it can be weighted which aspects of the project partner’s prior knowledge apply to new challenges and situations and how this knowledge can be fully advantaged.
REFERENCES

Photos: Pekka Elomaa, Resonaari-concert 2006